Search results for "Primary 37C85"
showing 3 items of 3 documents
On James Hyde's example of non-orderable subgroup of $\mathrm{Homeo}(D,\partial D)$
2020
In [Ann. Math. 190 (2019), 657-661], James Hyde presented the first example of non-left-orderable, finitely generated subgroup of $\mathrm{Homeo}(D,\partial D)$, the group of homeomorphisms of the disk fixing the boundary. This implies that the group $\mathrm{Homeo}(D,\partial D)$ itself is not left-orderable. We revisit the construction, and present a slightly different proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our approach allows to solve the analogue problem for actions on the circle.
Small $C^1$ actions of semidirect products on compact manifolds
2020
Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…
Hyperbolicity as an obstruction to smoothability for one-dimensional actions
2017
Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…